Efecto y mitigación de la toxicidad por arsénico y cadmio en cultivo de arroz
DOI:
https://doi.org/10.36436/24223484.327Palabras clave:
Toxicidad, estrés oxidativo, contaminación, metales pesados, bioacumulación.Resumen
El arroz es un cereal básico en la alimentación de millones de personas en el mundo. Sin embargo, las malas prácticas agrícolas e industriales han aumentado la contaminación de suelos agrícolas con metales pesados como el arsénico y el cadmio, los cuales son considerados tóxicos no solo para las plantas sino para los humanos. Los metales pesados se bioacumulan en los organismos y se mueven a través de las cadenas tróficas hasta llegar a las personas y generar graves afectaciones a su salud. El arsénico y cadmio pueden afectar la fertilidad del suelo, disminuir las actividades microbianas, la biodiversidad y los rendimientos de los cultivos. Las principales afectaciones en las plantas son las alteraciones en la morfología y fisiología, pues el arsénico y el cadmio están relacionados con el estrés oxidativo en las células, el cual provoca daño de la pared celular por la peroxidación de lípidos. Este documento expondrá los mecanismos de transporte y de defensa de las plantas para mitigar los efectos adversos de la toxicidad del arsénico y cadmio. Además, se muestran algunas técnicas para la remediación de metales pesados, las cuales incluyen métodos físicos, químicos y biológicos. La desintoxicación por metales pesados en suelos se enfoca por un lado en su remoción y por el otro, en la disminución de su biodisponibilidad y movilidad tanto en el suelo como en la planta.Descargas
Citas
Yu H-Y, Wang X, Li F, Li B, Liu C, Wang Q, et al. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice *. 2017 [cited 2019 Jun 16]; Available from: http://dx.doi.org/10.1016/j.envpol.2017.01.072
Arif M, Jan T, Riaz M, Fahad S, Arif MS, Shakoor MB, et al. 29 [Internet]. Advances in Rice Research for Abiotic Stress Tolerance. Elsevier Inc.; 2019. 585–614 p. Available from: http://dx.doi.org/10.1016/B978-0-12-814332-2.00029-0
Jin M, Liu X, Wu L, Liu M. An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice. Int J Appl Earth Obs Geoinf [Internet]. 2015;41:118–29. Available from: http://dx.doi.org/10.1016/j.jag.2015.04.023
Liu YL, Wen C, Liu XJ. China’s food security soiled by contamination. Science. 2013; 339(March):1382-3. https://doi.org/10.1126/science.339.6126.1382-b
Londoño LF, Londoño PT, Muñoz FG. Los riesgos de los metales pesados en la salud humana y animal. Biotecnología en el Sector Agropecuario y Agroindustrial. 2016;14(2):145-53. https://doi.org/10.18684/BSAA(14)145-153
Taiz L, Zeiger E. Plant physiology. Ann Bot. 2003;91(6):750-751. https://doi.org/10.1093/aob/mcg079
Ma L, Zhong H, Wu Y-G. Effects of Metal-Soil Contact Time on the Extraction of Mercury from Soils. Bull Environ Contam Toxicol [Internet]. 2015 Mar 23 [cited 2019 Jul 11];94(3):399–406. Available from: http://link.springer.com/10.1007/s00128-015-1468-x
Wang Z, Forsyth D. Methods for the Determination of Arsenic Speciation in Rice: A Review. In: Encyclopedia of Analytical Chemistry [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2012 [cited 2019 Jul 13]. Available from: http://doi.wiley.com/10.1002/9780470027318.a9357
Abbas G, Murtaza B, Bibi I, Shahid M, Niazi N, Khan M, et al. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int J Environ Res Public Health [Internet]. 2018 Jan 2 [cited 2019 Jul 13];15(1):59. Available from: http://www.mdpi.com/1660-4601/15/1/59
Pandey S, Rai R, Rai LC. Biochemical and Molecular Basis of Arsenic Toxicity and Tolerance in Microbes and Plants. In: Handbook of Arsenic Toxicology [Internet]. Elsevier; 2015 [cited 2019 Jul 13]. p. 627–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780124186880000277
Stoeva N, Bineva T. Oxidative changes and photosynthesis in oat plants grown in as-contaminated soil [Internet]. Bulg J Plant Physiol. 2003 [citado 2019 Jul 13];29(1-2), 87-95. Disponible en: https://bit.ly/3dv10K0
Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Front Physiol. 2012 [cited 2019 Jul 13];3:182. https://doi.org/10.3389/fphys.2012.00182
Pernía B, De Sousa A, Reyes R, Castrillo M. Biomarcadores de contaminación por cadmio en las plantas. Interciencia [Internet]. 2008 [cited 2019 Jul 11];112–9. Available from: http://www.scielo.org.ve/scielo.php?pid=S0378-18442008000200007&script=sci_arttext&tlng=pt
Murugan B, Malla A, Ramalingam S. Cadmium Stress and Toxicity in Plants: An Overview. Physiol to Remediat [Internet]. 2019 Jan 1 [cited 2019 Jul 11];1–17. Available from: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/B9780128148648000012
Gill S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem [Internet]. 2010 Dec 1 [cited 2019 Jul 12];48(12):909–30. Available from: https://doi.org/10.1016/j.plaphy.2010.08.016
Zhao H, Wu L, Chai T, Zhang Y, Tan J, Ma S. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. J Plant Physiol [Internet]. 2012;169:1243–52. Available from: http://dx.doi.org/10.1016/j.jplph.2012.04.016
Marrugo J, Pinedo J, Díez S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ Res. 2017 Apr 1;154:380–8.
Eliana Andrea MM, Ana Carolina TE, Tito José CB, José Luis MN, Luis Carlos GM. Evaluation of contaminants in agricultural soils in an Irrigation District in Colombia. Heliyon. 2019 Aug 1;5(8):e02217.
Saifullah, Dahlawi S, Naeem A, Iqbal M, Farooq MA, Bibi S, et al. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. 2018 [cited 2019 Jul 13]; Available from: https://doi.org/10.1016/j.chemosphere.2017.11.149
Li J-S, Beiyuan J, Tsang DCW, Wang L, Poon CS, Li X-D, et al. Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. 2017 [cited 2019 Jun 16]; Available from: http://dx.doi.org/10.1016/j.chemosphere.2017.05.019
Zhang L, Qin X, Tang J, Liu W, Yang H. Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. 2017 [cited 2019 Jun 16]; Available from: http://dx.doi.org/10.1016/j.apgeochem.2016.05.014
Basu A, Saha D, Saha R, Ghosh T, Saha B. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res Chem Intermed [Internet]. 2014 Feb 9 [cited 2019 Jul 13];40(2):447–85. Available from: http://link.springer.com/10.1007/s11164-012-1000-4
Instituto Nacional de Salud. Documentos. Evaluación de riesgos en inocuidad de alimentos. Perfil de riesgo de arsénico en arroz en Colombia [Internet]. Bogotá; 2013 [citado 2020 Nov 2]. Disponible en: https://bit.ly/3pCrlbs
Yin D, Wang X, Chen C, Peng B, Tan C, Li H. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere [Internet]. 2016 [cited 2019 Jul 13];152:196–206. Available from: http://dx.doi.org/10.1016/j.chemosphere.2016.01.044
Rehman MZ ur, Rizwan M, Hussain A, Saqib M, Ali S, Sohail MI, et al. Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. 2018 [cited 2019 Jul 13]; Available from: https://doi.org/10.1016/j.envpol.2018.06.005
Murphy SF, McCleskey RB, Martin DA, Holloway JAM, Writer JH. Wildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste. Sci Total Environ. 2020 Nov 15;743:140635.
Chen H, Tang Z, Wang P, Zhao F-J. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice *. 2018 [cited 2019 Jul 12]; Available from: https://doi.org/10.1016/j.envpol.2018.03.048
Dolphena R, Thiravetyanb P. Reducing arsenic in rice grains by leonardite and arsenic–resistant endophytic bacteria. Chemosphere [Internet]. 2019 May 1 [cited 2019 Jul 11];223:448–54. Available from: https://doi.org/10.1016/j.chemosphere.2019.02.054
Irem S, Islam E, Maathuis FJM, Khan N. Chemosphere Assessment of potential dietary toxicity and arsenic accumulation in two contrasting rice genotypes : Effect of soil amendments. Chemosphere [Internet]. 2019;225:104–14. Available from: https://doi.org/10.1016/j.chemosphere.2019.02.202
Chaney RL, Kim W Il, Kunhikrishnan A, Yang JE, Ok YS. Integrated management strategies for arsenic and cadmium in rice paddy environments. Geoderma [Internet]. 2016 [cited 2019 Jul 13];270. Available from: http://dx.doi.org/10.1016/j.geoderma.2016.03.001
Yang M, Zhang Y, Zhang L, Hu J, Zhang X, Lu K, et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. J Exp Bot [Internet]. 2014 Sep 1 [cited 2019 Jul 12];65(17):4849–61. Available from: https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eru259
Luo Q, Sun L, Hu X, Zhou R. The Variation of Root Exudates from the Hyperaccumulator Sedum alfredii under Cadmium Stress: Metabonomics Analysis. Muñoz-Barrutia A, editor. PLoS One 2014;9(12):e115581. Available from: https://dx.plos.org/10.1371/journal.pone.0115581
Vázquez S, Goldsbrough P, Carpena R. Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiol Plant [Internet]. 2006 Nov 1 [cited 2019 Jul 11];128(3):487–95. Available from: http://doi.wiley.com/10.1111/j.1399-3054.2006.00764.x
Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, et al. Genotypic and Environmental Variations in Grain Cadmium and Arsenic Concentrations Among a Panel of High Yielding Rice Cultivars. Rice [Internet]. 2017 Dec 28 [cited 2019 Jul 13];10(1):9. Available from: http://thericejournal.springeropen.com/articles/10.1186/s12284-017-0149-2
Ashraf U, Hussain S, Ahmad S, Abbas F. Plant Physiology and Biochemistry Alterations in growth , oxidative damage , and metal uptake of fi ve aromatic rice cultivars under lead toxicity. Plant Physiol Biochem [Internet]. 2017;115:461–71. Available from: http://dx.doi.org/10.1016/j.plaphy.2017.04.019
Díaz M, Pérez Y, Cazaña Y, Prieto M, Yudit WH, Lugo H. Determination of enzymatic antioxidants in Morus alba varieties and hybrids. Pastos y Forrajes. 2010;33(3):1-12. http://scielo.sld.cu/pdf/pyf/v33n3/pyf06310.pdf
Pál M, Csávás G, Szalai G, Oláh T, Khalil R, Yordanova R, et al. Polyamines may influence phytochelatin synthesis during Cd stress in rice. J Hazard Mater [Internet]. 2017 [cited 2019 Jul 12];340:272–80. Available from: http://dx.doi.org/10.1016/j.jhazmat.2017.07.016
Shanmugaraj B, Chandra H, Srinivasan B, Ramalingam S. Cadmium Induced Physio-Biochemical and Molecular Response in Brassica Juncea. Int J Phytoremediation [Internet]. 2013 Mar [cited 2019 Jul 12];15(3):206–18. Available from: http://www.tandfonline.com/doi/abs/10.1080/15226514.2012.687020
Li M, Zhang J, Yang X, Zhou Y, Zhang L, Yang Y, et al. Responses of ammonia-oxidizing microorganisms to biochar and compost amendments of heavy metals-polluted soil. J Environ Sci (China). 2021 Apr 1;102:263–72. https://doi.org/10.1016/j.jes.2020.09.029
Baragaño D, Forján R, Fernández B, Ayala J, Afif E, Gallego JLR. Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. Environ Sci Pollut Res [Internet]. 2020 Sep 12 [cited 2020 Nov 2];27(27):33681–91. Available from: http://link.springer.com/10.1007/s11356-020-09586-3
Wang Y, Liu Y, Zhan W, Zheng K, Wang J, Zhang C, et al. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Sci Total Environ. 2020 Aug 10;729:139060.
Jun L, Wei H, Aili M, Juan N, Hongyan X, Jingsong H, et al. Effect of lychee biochar on the remediation of heavy metal-contaminated soil using sunflower: A field experiment. Environ Res. 2020 Sep 1;188:109886.
Meng J, Liang S, Tao M, Liu X, Brookes PC, Xu J. Chemical speciation and risk assessment of Cu and Zn in biochars derived from co-pyrolysis of pig manure with rice straw. Chemosphere. 2018;200:344-
https://doi.org/10.1016/j.chemosphere.2018.02.138
Zand AD, Tabrizi AM, Heir AV. Incorporation of biochar and nanomaterials to assist remediation of heavy metals in soil using plant species. Environ Technol Innov. 2020 Nov 1;20:101134. https://doi.org/10.1016/j.eti.2020.101134
He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. 2019 [cited 2019 Jun 17]; Available from: https://doi.org/10.1016/j.envpol.2019.05.151
Liu Y, Huang J, Xu H, Zhang Y, Hu T, Chen W, et al. A magnetic macro-porous biochar sphere as vehicle for the activation and removal of heavy metals from contaminated agricultural soil. Chem Eng J. 2020 Jun 15;390:124638.
Wang J, Shi L, Zhai L, Zhang H, Wang S, Zou J, et al. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicol Environ Saf. 2021 Jan 1;207:111261.
Shu R, Wang YJ, Zhong H. Biochar amendment reduced methylmercury accumulation in rice plants. J Hazard Mater [Internet]. 2016 Aug 5 [cited 2019 Jul 11];313:1–8. Available from: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S030438941630303X
Simón M, González V, de Haro S, García I. Are soil amendments able to restore arsenic-contaminated alkaline soils? J Soils Sediments [Internet]. 2015 Jan 10 [cited 2019 Jun 16];15(1):117–25. Available from: http://link.springer.com/10.1007/s11368-014-0953-x
Lakshmanan V, Shantharaj D, Li G, Seyfferth AL, Janine Sherrier D, Bais HP. A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta [Internet]. 2015 Oct 10 [cited 2019 Jul 11];242(4):1037–50. Available from: http://link.springer.com/10.1007/s00425-015-2340-2
Xu JY, Han YH, Chen Y, Zhu LJ, Ma LQ. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. Chemosphere. 2016 Feb 1;144:1233–40.
Cheng C, Nie ZW, He LY, Sheng XF. Rice-derived facultative endophytic Serratia liquefaciens F2 decreases rice grain arsenic accumulation in arsenic-polluted soil. Environ Pollut. 2020 Apr 1;259:113832.
Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Vol. 174, Journal of Environmental Management. Academic Press; 2016. p. 14–25.
Yang YP, Zhang HM, Yuan HY, Duan GL, Jin DC, Zhao FJ, et al. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environ Pollut [Internet]. 2018 May 1 [cited 2019 Jul 11];236:598–608. https://doi.org/10.1016/j.envpol.2018.01.099
Meng F, Yuan G, Larson SL, Ballard JH, Waggoner CA, Arslan Z, et al. Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite. J Environ Radioact. 2017 Dec 1;180:1–8.
Zhu H, Chen C, Xu C, Zhu Q, Huang D. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China *. Environ Pollut [Internet]. 2016 [cited 2019 Jul 13];219:99–106. Available from: http://dx.doi.org/10.1016/j.envpol.2016.10.043
Hu P, Huang J, Ouyang Y, Wu L, Song J, Wang S, et al. Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ Geochem Health [Internet]. 2013 Dec 30 [cited 2019 Jul 13];35(6):767–78. Available from: http://link.springer.com/10.1007/s10653-013-9533-z
Deng L, Li Z, Wang J, Liu H, Li N, Wu L, et al. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytoremediation [Internet]. 2016 Feb 7 [cited 2019 Jul 13];18(2):134–40. Available from: http://www.tandfonline.com/doi/full/10.1080/15226514.2015.1058328
Pinson SRM, Tarpley L, Yan W, Yeater K, Lahner B, Yakubova E, et al. Worldwide Genetic Diversity for Mineral Element Concentrations in Rice Grain. Crop Sci [Internet]. 2015 [cited 2019 Jul 13];55(1):294. Available from: https://dl.sciencesocieties.org/publications/cs/abstracts/55/1/294