Importancia de la interacción de bacteriófagos y bacterias ruminales en el desarrollo productivo del rumiante

Authors

  • Diego Felipe Portela Díaz

DOI:

https://doi.org/10.36436/24223484.244

Keywords:

rumen, bacteriófago, fermentación, bacteria, lisogénico

Abstract

En el rumen se hospedan especies de bacterias (1010-1011/mL), arqueobacterias (107-109/mL), protozoarios (104-106/mL), hongos (103-106/mL) y virus, definidos como bacteriófagos (109-1010/mL). Este ecosistema es dinámico y las interacciones microbiológicas que favorecen el cometabolismo para mantener las condiciones físicas y químicas de la fermentación ruminal. Los bacteriófagos pueden influir en el metabolismo ruminal mediante la lisis de un gran número de bacterias (e.j. celulolítica, fibrolíticas, amilolíticas), que participan en la degradación y conversión del alimento en ácidos grasos de cadena corta y otros ácidos orgánicos que pueden reducir el pH ruminal. Streptococcus bovis es una bacteria amilolítica productora de ácido láctico y de forma experimental se han usado bacteriófagos específicos, como alternativa de prevención de la acidosis ruminal subclínica (ARS), enfermedad asociada a la proliferación de esta bacteria en el rumen de vacas de alta producción lechera. La presencia de material genético viral en las bacterias ruminales es un indicio de la probable interacción de regulación del crecimiento de una especie y la transducción de ADN, con el fin de compartir patrones de resistencia, manteniendo así un grupo de bacterias adaptadas a la variación ambiental, con lo cual el rumiante adquiere mayor rusticidad para aprovechar y fermentar fuentes de alimentación según su sistema productivo.

Downloads

Download data is not yet available.

Author Biography

Diego Felipe Portela Díaz

1 Programa de Zootecnia, Facultad de Ciencias Agropecuarias. Universidad de Cundinamarca, Fusagasugá, Cundinamarca,2 Licenciatura en Medicina Veterinaria, Universidad de la Costa. Oaxaca, México.

References

Kamra D. N. 2005 Rumen microbial ecosystem. Current Science 89: 124-135.

Wright, A.G. and A. V. Klieve. 2011. Does the complexity of the rumen microbial ecology preclude methane mitigation? Animal Feed Science and Technology. 166-167: 248-253.

Monk, A.B., Rees, C.D., Barrow P., Hagens S. and Harper D.R. 2010. Bacteriophage applications: where are we now? Letters in Applied Microbiology 51: 363–369.

Donald, l. E. & M. Paynter, J. B.1980. Enumeration of bacteriophages and host bacteria in sewage and the activated-sludge treatment process. Applied and Environmental Microbiology 39:(3);576-583.

Klieve, A. V., and T. Bauchop. 1988. Morphological diversity of ruminal bacteriophages from sheep and cattle. Applied and Environmental Microbiology 54:1637-1641.

Paynter, M. J. B., D. L. Ewert, and W. Chalupa. 1969. Some morphological types of bacteriophages in bovine rumen contents. Applied and Environmental Microbiology 18:942-943.

Rasmussen, M.A., Cray, W.C., Casey, T.A. and Whipp, S.C. 1993. Rumen contents as a reservoir of enterohemorrhagic Escherichia coli. FEMS Microbiology Letters 114: 79–84.

Grauke, L.J., Kudva, I.T., Yoon, J.W., Hunt, C.W., Williams, C.J. & Hovde, C.J. 2002. Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants. Applied and Environmental Microbiology 68: 2269-2277.

Frenzen, P.D., Drake, A. & Angulo, F.J. 2005. Economic cost of illness due to Escherichia coli O157 infections in the United States. Journal of Food Protection 68: 2623–2630.

LeJeune, J. T., T. E. Besser, D. H. Rice, J. L. Berg, R. P. Stilborn, & D. D. Hancock. 2004. Longitudinal study of fecal shedding of Escherichia coli O157:H7 in feedlot cattle: Predominance and persistence of specific clonal types despite massive cattle population turnover. Applied and Environmental Microbiology 70:377–384.

Besser, T. E., J. T. LeJeune, D. H. Rice, J. Berg, R. P. Stilborn, K. aya, W. Bae, and D. D. Hancock. 2005. Increasing prevalence of Campylobacter jejuni in feedlot cattle through the feeding period. Applied and Environmental Microbiology 71:5752–5758.

Zhao, S., P. F. McDermott, S. Friedman, J. Abbott, S. Ayers, A. Glenn, E. Hall-Robinson, S. K. Hubert, H. Harbottle, R. D. Walker, T. M. Chiller, and D. G. White. 2006. Antimicrobial resistance and genetic relatedness among Salmonella from retail foods of animal origin: NARMS retail meat surveillance. Foodborne Pathogen Disease. 3:106–117.

Slyter, L. L. 1976. Influence of acidosis on rumen function. Journal of Animal Science 43: 910-929.

Liu, D., Zhou, X. L., Zhao, P.T., Gao, M., Han, H.G., Hu, H.L.2013. Effects of increasing non-fiber carbohydrate to neutral detergent fiber ratio on rumen fermentation and microbiota in goats. Journal of Integrative Agriculture 12 (2):319-326.

Owens, F. N., D. S. Secrist, W. J. Hill, and D. R. Gill. 1998. Acidosis in cattle: A review. Journal of Animal Science 76:275-286.

Calsamiglia, S., Blanch M., Ferret A., Moya D. 2012. Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Animal Feed Science and Technology 172:42–50.

Britton, R. A. 1991. D-Lactic Acidosis, myth or fact. Animal Science Department, University of Nebraska-Lincoln. Ed. Elanco Products Company.

Rivas L. Coffey B., McAuliffe O., McDonnell M. J., Burgess C. M., Coffey A., Ross, R.P.& Duffy G. 2010. In Vivo and Ex Vivo Evaluations of Bacteriophages e11/2 and e4/1c for Use in the Control of Escherichia coli O157:H7. Applied and Environmental Microbiology, 76 (21): 7210–7216.

Raya, R. R., Varey, P., Oot, R. A., Dyen, M. R., Callaway, T. R., Edrington, T. S., Kutter E. M. & Brabban A. D. 2006. Isolation and Characterization of a New T-Even Bacteriophage, CEV1, and Determination of Its Potential To Reduce Escherichia coli O157:H7 Levels in Sheep. Applied and Environmental Microbiology 72 (9):6405- 6410.

Ambroẑič, J., Ferme, D., Grabnar, M., Ravnikar, M., Avguštin, G.,2001. The Bacteriophages of Ruminal Prevotellas. Folia Microbiology 46 (1) : 37-39.

Bach, S. J., Mcallister, T. A., Veira, D. M., Gannon, V. P.J., Holley R. A. 2003. Effect of bacteriophage DC22 on Escherichia coli O157:H7 in an artificial rumen system (Rusitec) and inoculated sheep. Animal research 52:89–101.

Štyriak. I., Gálfi . P. and Kmeť .V. 1991. Preliminary observations of interaction between bacteriophages and Streptococcus bovis bacteria on ruminal epithelium primoculture. Veterinary Microbiology 29 :281-287.

Štyriak. I., Pristaš . P. and Javorskŷ. 1998. Lack of Surface Receptors not Restriction-Modification System Determines F4 Phage Resistance in Streptococcus bovis II/1. Folia Microbiology 43 (1), 35-38.

Štyriak I., Španová A. and Žitňan. R. 2005. Partial characterization of two ruminal bacteriophages with similar restriction patterns and different capsids morphology. Archiv Tierzucht 48 (6): 572-579.

Klieve, A. V. & Bauchop, T.1988. Morphological Diversity of Ruminal Bacteriophages from Sheep and Cattle. Applied and Environmental Microbiology 54 (6): 1637-1641.

Koskella, B. & Meaden, S. 2013. Understanding bacteriophage specificity in natural microbial communities. Viruses 5: 806-823.

Sulakvelidze, A., Alavidze, Z., and Morris, J. G. 2001. Bacteriophage Therapy. Antimicrobial Agents and Chemotherapy 45 (3): 649-659.

Harper, D.R. and Kutter, E. 2008. Bacteriophage: therapeutic uses. In The Encyclopedia of Life Sciences. Chichester: John Wiley & Sons. 29. d’Herelle, F. 1919. Sur le role du microbe bacteriophage dans la typhose aviare. Comptes rendus Acad Sci Paris 169: 932–934.

Alisky, J., K. Iczkowski, A. Rapoport, and N. Troitsky. 1998. Bacteriophages show promise as antimicrobial agents. Journal of

Infection 36:5–15. Fischetti V. A. 2010. Bacteriophage endolysins: A novel antiinfective to control Gram-positive pathogens. International Journal of Medical Microbiology 300: 357–362.

Russel, M., Linderoth, N.A., Sali, A. 1997. Filamentous phage assembly: variation on a protein export theme. Gene 192:23-32.

Borysowski, J., Weber-Dabrowska, B., Gorski, A. 2006. Bacteriophage endolysins as a novel class of antibacterial agent. Experimental Biology and Medicine 231:366-77.

Young, R. 1992. Bacteriophage lysis: mechanism and regulation. FEMS Microbiology Reviews 56:430-81.

Loessner, M.J., Kramer, K., Ebel, F., Scherer, S. 2002. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Molecular Microbiology 44:335-49.

Meyer, J.R., Dobias, D.T., Weitz, J.S., Barrick, J.E., Quick, R.T., Lenski, R.E. 2012. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335: 428–432.

Hyman, P., Abedon, S.T. 2010. Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology 70: 217-248.

Miklič, A., Rogelj, I. 2003. Characterization of lactococcal bacteriophages isolated from Slovenian dairies. International Journal of Food Science & Technology 38: 305–311.

Vos, M., Birkett, P.J., Birch, E., Griffiths, R.I., Buckling, A.2009. Local adaptation of bacteriophages to their bacterial hosts in soil. Science 9: 325, 833.

Koskella, B., Thompson, J.N., Preston, G.M., Buckling, A. 2011. Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. The American Naturalist 177: 440–451.

Hall, A.R., Scanlan, P.D., Morgan, A.D., Buckling, A. 2011. Host–parasite coevolutionary arms races give way to fluctuating selection. Ecology Letters 14: 635–642.

Klieve, A. V., Hudman, J. F. & Bauchop, T. 1989. Inducible Bacteriophages from Ruminal Bacteria. Applied and Environmental Microibiology. 55 (6): 1630-1634.

Chen, J., Novick, R.P. 2009. Phage-mediated intergeneric transfer of toxin genes. Science 323: 139–141.

Mazaheri Nezhad Fard, R. Barton, M., Heuzenroeder, M. 2011. Bacteriophage‐mediated transduction of antibiotic resistance in enterococci. Letters in Applied Microbiology 52: 559–564.

Beumer, A., Robinson, J.B. 2005. A Broad-Host-Range, Generalized Transducing Phage (SN-T) Acquires 16S rRNA Genes from Different Genera of Bacteria. Letters in Applied Microbiology 71: 8301–8304.

Adams M.H. 1959. Bacteriophages, Interscience Publishers, Inc., New York, 592 p.

Hadas, H., Einav, M., Fishov, I., Zaritsky, A. 1997. Bacteriophage T4 development depends on the physiology of its host Escherichia coli, Microbiology 143: 179–185.

Henning, U. & Hashemolhosseini, S. 1994. Receptor recognition by T-even-type coliphages. In Molecular Biology of Bacteriophage T4 ed. Karam, J.D. pp. 291–298.

Goodridge, L., Gallaccio, A. and Griffiths, M.W. 2003. Morphological, host range, and genetic characterization of two coliphages. Applied and Environmental Microbiology 69: 5364–5371.

Fenton, M., Ross, P., McAuliffe, O., O’Mahony J. & Coffey., A. 2010. Recombinant bacteriophage lysins as antibacterials. Bioengineered Bugs (1) 1: 9-16.

Tanji, Y., Shimada, T., Fukudomi, H., Miyanaga, K., Nakai, Y. and Unno, H. 2005. Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. Journal of Bioscience and Bioengineering 100: 280–287.

Sheng, H., Knecht, H. J., Kudva, I. T. & Hovde C. J. 2006. Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Applied and Environmental Microbiology 72: 5359–5366.

Barrow, P., M. Lovell, and A. Berchieri, Jr. 1998. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clinical and Diagnostic Laboratory Immunology 5:294–298.

Smith, H. W., & M. B. Huggins. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhea in calves, piglets and lambs. Journal of General Microbiology 129:2659–2675.

Matsuzaki, S., M. Yasuda, H. Nishikawa, M. Kuroda, T. Ujihara, T. Shuin, Y. Shen, Z. Jin, S. Fujimoto, M. D. Nasimuzzaman, H. Wakiguchi, S. Sugihara, T. Sugiura, S. Koda, A. Muraoka, and S. Imai. 2003. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage phi MR11. The Journal of Infectious Diseases. 187:613–624.

Soothill, J. S. 1992. Treatment of experimental infections of mice with bacteriophages. Journal of Medical Microbiology 37:258–261.

Biswas, B., S. Adhya, P. Washart, B. Paul, A. N. Trostel, B. Powell, R. Carlton, & C. R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infection and Immunity 70:204–210.

Hodgson, K.2013. Bacteriophage therapy. Under the Microscope. 2: 10-20.

Iverson, W. G., & Millis, N. F. 1976. Bacteriocins of Streptococcus bovis. Canadian journal of microbiology, 22(7), 1040-1047.

Iverson, W. G., & Millis, N. F. 1976. Characterization of Streptococcus bovis bacteriophages. Canadian journal of microbiology, 22(6), 847-852.

Iverson, W. G., & Millis, N. F. 1976. Lysogeny in Streptococcus bovis. Canadian journal of microbiology, 22(6), 853-857.

Klieve, A.V., & Rosalind, A.S. 1993. Estimation of Ruminal Bacteriophage Numbers by Pulsed- Field Gel Etectrophoresis and Laser Densitometry. Applied and Environmental Microbiology 7:2299-2303.

Swain, R. A., Nolan, J. V., & Klieve, A. V. 1996. Natural variability and diurnal fluctuations within the bacteriophage population of the rumen. Applied and environmental microbiology, 62(3), 994-997.

Klieve, A. V., Swain, R. A., & Nolan, J. V. 1996. Bacteriophages in the rumen: types present, population size and implications for the efficiency of feed utilization. In Proceedings-australian society of animal production. 21;92-94.

Rosalind, A. S., Nolan, J. V., & Klieve A. V. 1996. Natural Variability and Diurnal Fluctuations within the Bacteriophage Population of the Rumen. Applied and Environmental Microbiology 62 (3): 994–997.

Donovan, D.M., Lardeo, M., Foster-Frey, J. 2006. Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiology Letters 265:133-9.

Obeso, J.M., Martinez, B., Rodriguez, A., García, P. 2008. Lytic activity of the recombinant staphylococcal bacteriophage phiH5 endolysin active against Staphylococcus aureus in milk. International Journal of Food Microbiology 128:211-8.

Wellenberg, G.J., Van der Poel, W.H., Van Oirschot, J.T. 2002. Viral infections and bovine mastitis: a review. Veterinary Microbiology 88: 27-45.

Fineran, P.C.; Petty, N.K.; Salmond, G.P.C. Transduction:Host DNA Transfer by Bacteriophages. In The Encyclopedia of Microbiology; Schaechter, M., Ed.; Elsevier, 2009.

Published

2020-04-17

How to Cite

Portela Díaz, D. F. (2020). Importancia de la interacción de bacteriófagos y bacterias ruminales en el desarrollo productivo del rumiante. Ciencias Agropecuarias, 4(2), 41–45. https://doi.org/10.36436/24223484.244

Issue

Section

ARTÍCULO DE REVISIÓN