Use of non-conventional irrigation techniques for efficient water use to mitigate the effects of climate variability on rice cultivation

Authors

DOI:

https://doi.org/10.36436/24223484.563

Keywords:

Alternate wetting and drying, multiple inlet irrigation, water productivity

Abstract

Rice is the most important crop in the Tolima region. However, this crop has high water consumption due to inefficient agricultural practices. Therefore, the use of non-conventional irrigation techniques emerges as a strategy for efficient water use, especially in conditions of climatic variability that affect water availability. Three irrigation techniques were compared—conventional, Multiple Inlet Rice Irrigation (MIRI), and Alternate Wetting and Drying (AWD)—in terms of water productivity and crop yield, during two crop cycles. It was observed that the use of MIRI and AWD irrigation techniques allows for reducing water consumption in rice cultivation by up to 54% without affecting yield, which leads to greater water productivity with these techniques compared to conventional irrigation. According to the results of this study, it is possible to reduce irrigation water use in rice cultivation without affecting yield.

Downloads

Download data is not yet available.

References

Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistical Database [Internet]. [citado en 2023]. Disponible en: https://www.fao.org/faostat/en/#data

Federación Nacional de Arroceros (Fedearroz). Estadísticas Arroceras [Internet]. [citado en 2023]. Disponible en: http://www.fedearroz.com.co/new/apr_public.php

Liu M, Lin S, Dannenmann M, Tao Y, Saiz G, Zuo Q, et al. Do water-saving ground cover rice production systems increase grain yields at regional scales? Field Crops Res. 2013;150:19-28.

González BM, Alonso AM. Tecnologías para ahorrar agua en el cultivo de arroz. Nova. 2016;14(26):111-26.

Datta A, Ullah H, Ferdous Z. Water Management in Rice. En: Chauhan B, Jabran K, Mahajan G, editores. Rice Production Worldwide. Springer, Cham; 2017.

Lobell DB, Cassman KG, Field CB. Crop yield gaps: their importance, magnitudes, and causes. Annu Rev Environ Resour. 2009;34:179-204.

Castro-Llanos F, Hyman G, Rubiano J, Ramirez-Villegas J, Achicanoy H. Climate change favors rice production at higher elevations in Colombia. Mitig Adapt Strateg Glob Change. 2019;24:1401-30.

García MC, Piñeros Botero A, Bernal Quiroga FA, Ardila Robles E. Variabilidad climática, cambio climático y el recurso hídrico en Colombia. Rev Ing. 2012;(36):60-4.

LaHue GT, Linquist BA. The contribution of percolation to water balances in water-seeded rice systems. Agric Water Manag. 2021;243:106445.

Nawaz A, Rehman AU, Rehman A, Ahmad S, Siddique KHM, Farooq M. Increasing sustainability for rice production systems. J Cereal Sci. 2022;103:103400.

Vories ED, Tacker PL, Hogan R. Multiple inlet approach to reduce water requirements for rice production. Appl Eng Agric. 2005;21(4):611-6.

Pineda DF, Castilla LA, Sáenz JA, Saavedra WA. Diseño e implementación del sistema de riego en arroz por múltiples entradas en Colombia “MIRI” (Multiple Inlet Rice Irrigation). Adopción Masiva de Tecnología (AMTEC) [Internet]. Bogotá: Fedearroz; 2022 [citado en dic. 2022]. Disponible en: https://tinyurl.com/56tr4d2m

Massey JH, Reba ML, Adviento-Borbe MA, Chiu YL, Payne GK. Direct comparisons of four irrigation systems on a commercial rice farm: Irrigation water use efficiencies and water dynamics. Agric Water Manag. 2022;266:107606.

Guzmán MP, Sánchez AM, Hernández FJ. AMTEC alternativa para la competitividad y sostenibilidad. Arroz. 2020;68(549):27-31.

Carrijo DR, Lundy ME, Linquist BA. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017;203:173-80.

Mote K, Rao VP, Ramulu V, Kumar KA, Devi MU. Performance of rice (Oryza sativa (L.)) under AWD irrigation practice—A brief review. Paddy Water Environ. 2021;20:1-21.

Lampayan RM, Samoy-Pascual KC, Sibayan EB, Ella VB, Jayag OP, Cabangon RJ, et al. Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input, and water productivity of transplanted rice in Central Luzon, Philippines. Paddy Water Environ. 2015;13:215-27.

Rojas A, Hernández F, Cuellar C, Quintero D, Garcés G, Saavedra E, et al. Resiliencia frente al cambio climático, otro logro del AMTEC. Arroz. 2021;69(552):12–27.

Brouwer C, Prins K, Heibloem M. Irrigation water management: Training manual no. 4: Irrigation scheduling. Roma: FAO; 1985.

Hatiye SD, Prasad KH, Ojha C. Water balance and water productivity of rice paddy in unpuddled sandy loam soil. Sustain Water Resour Manag. 2017;3:109-28.

Spectrum Technologies, Inc. Fieldscout TDR 350. Medidor de Humedad de Suelos. Manual del producto [Internet]. 2017. Disponible en: https://tinyurl.com/4xba7dje

Sentek Pty Ltd. Diviner 2000 [Internet]. Disponible en: https://tinyurl.com/4wxw9fxu

Published

2023-02-10

How to Cite

Martínez-Vega, R. R., Ouazaa, S., Chaali, N., Jaramillo-Barrios, C. I., Calderón-Carvajal, J. E., Beltrán-Medina, J. I., … De Swaef, T. (2023). Use of non-conventional irrigation techniques for efficient water use to mitigate the effects of climate variability on rice cultivation. Ciencias Agropecuarias, 9(1), 61–71. https://doi.org/10.36436/24223484.563

Issue

Section

Articles