EVOLUTIONARY MECHANISMS THAT GENERATE BACTERIAL RESISTANCE IN LIVESTOCK PRODUCTION

Authors

  • Natalia Escobar Facultad de Ciencias Agropecuarias, Universidad de Cundinamarca.

DOI:

https://doi.org/10.36436/24223484.236

Keywords:

bacteria, Resistencia, antibioticos, produccion ganadera.

Abstract

From a strictly Darwinian evolution reference the result of continuous adaptation of an organism to changing a different environments. Any modification of gene structure of an individual assumes the ability to adapt to new environments. The irrational use of antibiotics in livestock production, self-medication and lack of knowledge of the mechanisms of bacterial resistance have led to a marked decline of therapeutic options in health services and problems associated with food security. Multidrug resistance is a challenge to the various treatments leaving little chance to successfully tackle infections. Transfer of resistance genes is performed horizontally across several genetic elements within the best known are, plasmids, transposons, bacteriophage DNA and more recently, gene cassettes and integrons. The transfer of these elements can occur between different bacteria by conjugation, transformation or transduction. This transfer allows the transmission to other generations and also other bacterial species, thus bacteria can acquire resistance to one or more drugs without being in contact with these. The mechanisms used by bacteria to defend against antibiotics are constantly evolving. Resistance to antibiotics is due to genetic and structural processes of microorganisms through which mechanisms have been developed as efflux pumps, altered site of action, enzymatic modification of the antibiotic by beta-lactamases, Carbapenemases and other modifying enzymes, changes in membrane permeability closing mainly porins.

Downloads

Download data is not yet available.

Author Biography

Natalia Escobar, Facultad de Ciencias Agropecuarias, Universidad de Cundinamarca.

Biologa, MSc., PhD (e), Docente Investigador Universidad de Cundinamarca. Grupo de Investigacion Area Verde.

References

GALÁN, J.C., BAQUERO, M.R., MOROSINI, M.I., BAQUERO, F. Bacteria with high mutation rate: the risks of accelerated life. Colombian Association of Infectious Diseases. 2006. vol. 10. 22-29.

ADAM, M., MURALI, B., NICOLE, O., GLENN, AND POTTER, S. Epigenetic

inheritance based evolution of antibiotic resistance in bacteria. BMC Evolutionary Biology. 2008. 8:52.

SUSSMAN, O., MATTOS, L., RESTREPO A. Bacterial resistance. infection

diseases in livestock. 2005. 15-21.

AUDESIRK, T., AUDESIRK, G. Life on earth. Prentice-Hall. 2004. 409-428.

ORMAN, B. Bacterial resistance and dispersal mechanisms. Journal of the Faculty of Dentistry. 2006. Vol. 21. 13-19.

FERNÁNDEZ, F., LÓPEZ, J., PONCE, L. M, MACHADO, C. Resistence in bacterial diseases. Rev Cubana Med. 2006. 32(1):44-8.

VIGNOLI, R., SEIJA, V. Bacteria evolution and survival. Bacteriology and fungi diseases. 2006. (2), 649- 662. Revista Ciencias Agropecuarias – Facultad de Ciencias Agropecuarias Universidad de Cundinamarca Vol. 1 No. 2 Enero - Mayo Año 1, 149.

DAZA, R. M. Bacterial resistance to antibiotics: its importance in making decisions in daily practice. Inf Ter Sist Nac hea. 2008. (22)3: 57-67.

WEINHOLD, B. Environmental Health. 2006. (114):3. A160-A169.

MARTINEZ, J.L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. 2009. 2521–2530.

GARCÍA, V.S., ROMEU, A., AND PALAU, J. Horizontal Gene Transfer in Bacterial and Archaeal Complete Genomes. Rovira i Virgili University, Department of Biochemistry and Biotechnology, Spain. 2002. 10:1719–1725.

GONZÁLEZ, G., MELLA, S., ZEMELMAN, R., BELLO, H., DOMÍNGUEZ, M. Integrons and resistance gene cassettes: structure and role against antibacterial. Rev Méd inf. 2004. 132: 619-626.

TAFUR, J.D., TORRES, J.A., VILLEGAS, M.V. Mechanisms of antibiotic resistance in Gram-negative bacteria. International Training Center and Medical Research., CIDEIM. 2008. (12): 3. 217- 226.

BRATU, S., LANDMAN, D., ALAM, M., TOLENTINO, E., QUALE, J. Detection of KPC carbapenem-hydrolyzing enzymes in Enterobacter spp. from Brooklyn, New York. Antimicrob Agents Chemother. 2005. 49:776-8.

DEPARDIEU, F., PODGLAJEN, I., LECLERCQ, R., COLLATZ, E., COURVALIN, P. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol. Rev. 2007. 20:79-114.

DOI, Y., ARAKAWA, Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides, Clin Infect Dis. 2007. 45:88-94.

ENDTZ, H. P., RUIJS, G. J., VAN, K. B., JANSEN, W. H., VAN DER, R. T.,

MOUTON, R. P. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J. Antimicrob Chemother .2010. 27:199-208.

GARCÍA, V.S., ROMEU, A., AND PALAU, J. Horizontal Gene Transfer in Bacterial and Archaeal Complete Genomes. Rovira i Virgili University, Department of Biochemistry and Biotechnology, E-43005 Tarragona, Catalonia, Spain. 2002.10:1719–1725.

HOCQUET, D., NORDMANN, P., EL, G.F., CABANNE, L., PLESIAT, P.

Involvement of the MexXY-OprM efflux system in the emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents. Chemother. 2006. 50:1347-351.

JACOBY, G.A., MUNOZ-PRICE, L.S. The new beta-lactamases. N Engl J Med. 2005.352:380-91.

RICE, L.B. Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect. Dis. 2006. 43-52.

VILLEGAS, M.V., LOLANS, K., CORREA, A., KATTAN, J.N., LÓPEZ, J.A., QUINN, J.P. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing {beta}-lactamase. Antimicrob Agents Chemother. 2007. 51:1553-5.

WANG, M., SAHM, D.F., JACOBY, G.A., HOOPER, D.C. Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrobial Agents Chemother. 2004. 48:1295-9.

PHILIPPON, A., ARLET, G., JACOBY, G.A. Plasmid-determined AmpC-type betalactamases. Antimicrob Agents Chemother. 2002. 46:1-11.

TRAN, J.H., JACOBY, G.A., HOOPER, D.C. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob Agents Chemother. 2005. 49:3050-2.

KOHLER, T., MICHEA-HAMZEHPOUR, M., EPP, S.F., PECHERE, J.C.

Carbapenem activities against Pseudomonas aeruginosa: respective contributions

of OprD and efflux systems. Antimicrob Agents Chemother. 2009. 43:424-7.

VARALDO, P., MONTANARI, M.P., AND GIOVANETTI, E. Genetic Elements Responsible for Erythromycin Resistance in Streptococci. Antimicrobial agents and chemotherapy. 2009. Vol. 53, 343–353.

YIGIT, H., QUEENAN, A.M., RASHEED, J.K., BIDDLE, J.W., DOMENECH SANCHEZ, A., ALBERTI, S. 2003. Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing beta-lactamase KPC-2. Antimicrob. Agents Chemother. 2010. 47:3881-9.

NORDMANN, P., POIREL, L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002. 8:321-31.

POIREL, L., PITOUT, J.D., NORDMANN, P. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol. 2007. 2:501-12.

TRAN, J.H., JACOBY, G. A. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci, USA. 2002. 99:5638-42.

ROBICSEK, A., JACOBY, G.A., HOOPER, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006. 6:629-40.

WEINHOLD, B. Bacterial and animal productions. Environmental Health. 2008. (114):3. A160-A169.

VILA, J., MARTI, S., SANCHEZ-CESPEDES, J. Efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother. 2007. 59;12:10-15.

Published

2015-03-09

How to Cite

Escobar, N. (2015). EVOLUTIONARY MECHANISMS THAT GENERATE BACTERIAL RESISTANCE IN LIVESTOCK PRODUCTION. Ciencias Agropecuarias, 1(2), 27–42. https://doi.org/10.36436/24223484.236

Issue

Section

ARTÍCULOS ORIGINALES