El café bajo estrés hídrico: entre la eficiencia fotosintética y la resiliencia ecológica mediada por abejas nativas
DOI:
https://doi.org/10.36436/24223484.752Palabras clave:
Estrés abiótico, meliponicultura, polinización funcional, resiliencia agroecosistémicaResumen
El déficit hídrico es una de las principales limitantes fisiológicas para la productividad del café en regiones tropicales. Este editorial reflexiona sobre cómo el estrés hídrico afecta los procesos fotosintéticos, la floración y la calidad del néctar en Coffea spp., y cómo tales cambios impactan la interacción con abejas sin aguijón, esenciales para la polinización. Se propone integrar la fisiología vegetal con la meliponicultura como estrategia de adaptación ante el cambio climático y de fortalecimiento de la sostenibilidad en caficulturas colombianas.Descargas
Citas
Foreign Agricultural Service. U.S. Department of Agriculture (USDA). Production - Coffee [Internet]. 2024 [citado 2024 Feb. 2]. Disponible en: https://www.fas.usda.gov/data/production/commodity/0711100
Ceballos-Sierra F, Dall’Erba S. The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach. Agricultural Systems. 2021; 190: 103126. https://doi.org/10.1016/j.agsy.2021.103126
Centro Nacional de Investigaciones de Café (Cenicafé). Guía más agronomía, más productividad, más calidad (3a ed.) [Internet]. Tercera. Manizales, Colombia: Cenicafé; 2021. 7–234 p. Disponible en: https://doi.org/10.38141/cenbook-0014
Damatta F, Ramalho J. Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology. 2006; 18(1): 55–81. https://doi.org/10.1590/S1677-04202006000100006
Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L, Bornemann G, et al. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security. 2015; 7(2): 303–321. https://doi.org/10.1007/s12571-015-0446-9
Harvey C, Pritts A, Zwetsloot M, Jansen K, Pulleman M, Armbrecht I, Avelino J, Barrera J, Bunn C, Hoyos J, Isaza C, et al. Transformation of coffee-growing landscapes across Latin America. A review. Agronomy for Sustainable Development. 2021; 41(5): 62. https://doi.org/10.1007/s13593-021-00712-0
Reyes-Herrera D, Sánchez-Reinoso A, Lombardini L, Restrepo-Díaz H. Physiological responses of coffee (Coffea arabica L.) plants to biochar application under water deficit conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2023; 51(3). 12873 https://doi.org/10.15835/nbha51312873
Almeida W, Ávila R, Pérez-Molina J, Barbosa M, Marçal D, De Souza R, Martino P, et al. The interplay between irrigation and fruiting on branch growth and mortality, gas exchange, and water relations of coffee trees. Tree Physiology. 2020; 41(1): 35–49. https://doi.org/10.1093/treephys/tpaa116
León-Rojas F, Valderrama-Palacios D, Borjas-Ventura R, Alvarado-Huaman L, Julca-Otiniano A, Figueroa L, et al. Low water availability has a greater influence on the development of coffee seedlings than an increase in temperature. Agronomía Colombiana. 2023; 41(1): 1–11. https://doi.org/10.15446/agron.colomb.v41n1.105778
Pappo E, Keene S, Smith H, Song Y, Colquhoun T, Wilson C, Flory S. Effects of reduced rainfall on coffee quality and volatile composition. Journal of the Science of Food and Agriculture. 2023; 104(1): 488–499. https://doi.org/10.1002/jsfa.12949
Ronchi C, Miranda F. Flowering percentage in arabica coffee crops depends on the water deficit level applied during the pre-flowering stage. Revista Caatinga. 2020; 33(1): 195–204. https://doi.org/10.1590/1983-21252020v33n121rc
Carr M. The water relations and irrigation requirements of coffee. Experimental Agriculture. 2001; 37(1): 1–36. https://doi.org/10.1017/S0014479701001090
Mariño Y. Respuesta fotosintética de Coffea arabica L. a diferentes niveles de luz y disponibilidad hídrica. Acta Agronómica. 2014; 63(2): 128–35. http://dx.doi.org/10.15446/acag.v63n2.38454
Avila R, Cardoso A, de Almeida W, Costa L, Machado K, Barbosa M, et al. Coffee plants respond to drought and elevated [CO2] through changes in stomatal function, plant hydraulic conductance, and aquaporin expression. Environmental and Experimental Botany. 2020; 177: 104148. https://doi.org/10.1016/j.envexpbot.2020.104148
de Oliveira M, Coelho L, Carvalho G, Botelho C, Torres L, Vilela D, et al. Photochemical efficiency correlated with candidate gene expression promote coffee drought tolerance. Scientific Reports. 2021; 11(1): 7436. https://doi.org/10.1038/s41598-021-86689-y
Nicolson S. Sweet solutions: Nectar chemistry and quality. Philosophical Transactions of the Royal Society B: Biological Sciences. 2022; 377(1853): 20210163. https://doi.org/10.1098/rstb.2021.0163
Crisosto C, Grantz D, Meinzer F. Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology. 1992; 10: 127–139. https://doi.org/10.1093/treephys/10.2.127
Rering C, Franco J, Yeater K, Mallinger R. Drought stress alters floral volatiles and reduces floral rewards, pollinator activity, and seed set in a global plant. Ecosphere. 2020; 11(9). e03254. https://doi.org/10.1002/ecs2.3254
Moreno E, Vit P, Aguilar I, Barth O. Melissopalynology of Coffea arabica honey produced by the stingless bee Tetragonisca angustula (Latreille, 1811) from Alajuela, Costa Rica. AIMS Agriculture and Food. 2023; 8(3): 804–831. https://doi.org/10.3934/agrfood.2023043
Geromel C, Ferreira L, Davrieux F, Guyot B, Ribeyre F, Brígida dos Santos M, et al. Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiology and Biochemistry. 2008; 46(5–6): 569–579. https://doi.org/10.1016/j.plaphy.2008.02.006
Somporn C, Kamtuo A, Theerakulpisut P, Siriamornpun S. Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea arabica L. cv. Catimor) harvested from north-eastern Thailand. Journal of the Science of Food and Agriculture. 2012; 92(9): 1956–1963. https://doi.org/10.1002/jsfa.5568
Vit P, Mejías A, Rial L, Ruiz J, Peña S, González A, Rodríguez-Malaver A, et al. Conociendo la miel de Melipona favosa en la Península de Paraguaná, estado Falcón, Venezuela. Revista del Instituto Nacional de Higiene Rafael Rangel. 43(1): 15–19.
Phillips B, Shaw R, Holland M, Fry E, Bardgett R, Bullock J, Osborne J. Drought reduces floral resources for pollinators. Global Change Biology. 2018; 24(7): 3226–3235. https://doi.org/10.1111/gcb.14130
Maia-Silva C, da Silva Pereira J, Freitas B, Hrncir M. Don’t stay out too long! Thermal tolerance of the stingless bees Melipona subnitida decreases with increasing exposure time to elevated temperatures. Apidologie. 2021; 52(1): 218–229. https://doi.org/10.1007/s13592-020-00811-z
Montoya-Pfeiffer P, González-Chaves A, Nates-Parra G. Effects of landscape structure and climate seasonality on pollen intake by honeybees in Neotropical highland agroecosystems. Agricultural and Forest Entomology. 2021; 23(4): 452–462. https://doi.org/10.1111/afe.12446
Martínez-Salinas A, Chain-Guadarrama A, Aristizábal N, Vilchez-Mendoza S, Cerda R, Ricketts T. Interacting pest control and pollination services in coffee systems. Proceedings of the National Academy of Sciences. 2022; 119(15): e2119959119. https://doi.org/10.1073/pnas.2119959119
Molina D, Ramírez V, Cortina H. Comportamiento de accesiones de Coffea arabica sometidas a déficit de humedad del suelo. Cenicafé. 2016; 67(1): 41–54.
Imbach P, Fung E, Hannah L, Navarro-Racines C, Roubik D, Ricketts T, et al. Coupling of pollination services and coffee suitability under climate change. Proceedings of the National Academy of Sciences of the United States of America. 2017; 114(39): 10438–10442. https://doi.org/10.1073/pnas.1617940114
Ricketts T, Daily G, Ehrlich P, Michener C. Economic value of tropical forest to coffee production. Proceedings of the National Academy of Sciences. 2004; 101(34): 12579–12582. https://doi.org/10.1073/pnas.0405147101
Moreaux C, Meireles D, Sonne J, Badano E, Classen A, González-Chaves A, Hipólito J, Klein A, et al. The value of biotic pollination and dense forest for fruit set of Arabica coffee: A global assessment. Agriculture, Ecosystems and Environment. 2022; 323: 107680. https://doi.org/10.1016/j.agee.2021.107680
Damatta F, Cunha R, Antunes W, Martins S, Araujo W, Fernie A, et al. In field-grown coffee trees source-sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function. New Phytologist. 2008; 178(2): 348–357. https://doi.org/10.1111/j.1469-8137.2008.02367.x
Centeno E, Hernández-Contreras D, García-Morantes J. Recursos florales empleados por la abeja angelita en un sistema agroforestal del municipio de Tena, Cundinamarca. En: Brochero H, editor. Bogotá, D.C. Colombia: Universidad Nacional de Colombia, Sede Bogotá; 2021. 61–72 p. Disponible en: https://tinyurl.com/5fm2b73y
Cepeda-Valencia J, Gómez D, Nicholls C. La estructura importa: abejas visitantes del café y estructura agroecológica principal (EAP) en cafetales. Revista Colombiana de Entomología. 2014; 40(2): 241–250.
Bravo-Monroy L, Tzanopoulos J, Potts S. Ecological and social drivers of coffee pollination in Santander, Colombia. Agriculture, Ecosystems and Environment. 2015; 211: 145–154. http://dx.doi.org/10.1016/j.agee.2015.06.007
Nates-Parra G, Rosso-Londoño J. Diversidad de abejas sin aguijón (Hymenoptera: Meliponini) utilizadas en meliponicultura en Colombia. Acta Biológica Colombiana. 2013; 18(3): 415–426.
Fernández D, Zambrano G, Gonzalez V. Comportamiento de nidificación, notas taxonómicas y distribución potencial de Paratrigona eutaeniata (Hymenoptera: Apidae, Meliponini). Revista Colombiana de Entomología. 2010; 36(2): 325–332. https://doi.org/10.25100/socolen.v36i2.9167
Solarte V, Talero C, Sanchez A. Stability of temperature, relative humidity and dew point inside Melipona eburnea (Apidae: Meliponini) colonies. Ciencias Agropecuarias. 2015; 1(1): 56–66. https://doi.org/10.36436/24223484.185
Sardi-Saavedra A, Manzano M, Vargas G, Rivera-Pedroza L. Melitofauna del agropaisaje de caña de azúcar en el Valle del Cauca, Colombia. Biota Colombiana. 2024; 25: e1128. https://doi.org/10.21068/2539200X.1128
Hernández-Contreras D, De Jesús Torres-Torres F, Figueroa-Lozano M, Sánchez-Montaño L, Posso-Terranova A, Muñoz-Flórez J. Genetic structure and diversity of Calycolpus moritzianus (Myrtaceae) in the north-eastern Andes of Colombia. Revista Mexicana de Biodiversidad. 2021; 92: e923635. https://doi.org/10.22201/ib.20078706e.2021.92.3635
Zorrilla-Azcué S, González-Rodríguez A, Oyama K, González M, Rodríguez-Correa H. The DNA history of a lonely oak: Quercus humboldtii phylogeography in the Colombian Andes. Ecology and Evolution. 2021; 11(11): 6814–6828. https://doi.org/10.1002/ece3.7529
Morillo-Coronado Y, Rojas-González S, Morillo-Coronado A, Castañeda-Cardona C, Mendoza-Romero K, Marín-Colorado J. Genetic variability of wild palms Euterpe precatoria, Euterpe oleracea and Mauritia flexuosa with molecular markers ISSR. Revista de Ciencias Agrícolas. 2023; 40(3): e3212. https://doi.org/10.22267/rcia.20234003.212
Marulanda M, López A, Aguilar S. Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers. Crop Breeding and Applied Biotechnology. 2007; 7(3): 242–252.
Araque-Castellanos D, Cancino-Escalante G, Hernández-Contreras D, Chinchilla-Cardenas D. Diversidad genética de Rubus glaucus Benth en el municipio de Pamplona (nororiente de Colombia). BISTUA Revista de la Facultad de Ciencias Básicas. 2021; 19(2): 8–14. https://doi.org/10.24054/bistua.v19i2.1125
Arias J, Flórez C. Identification of sources of male sterility in the Colombian Coffee Collection for the genetic improvement of Coffea arabica L. PLoS One. 2023; 18(9). https://doi.org/10.1371/journal.pone.0291264
Muñoz-Flórez J, Lobo M, Medina C, Caicedo Á, Morillo-Coronado Y. Caracterización molecular de genotipos de plátano del banco de germoplasma de Corpoica Palmira, con uso de marcadores RAMs. Acta Agronómica. 2012; 61(5): 28–29.
Castañeda-Cardona C, Morillo-Coronado Y, Morillo-Coronado A, Ochoa I. Genetic diversity in oil palm (Elaeis guineensis jacq) using RAM (Random Amplified Microsatellites). Bragantia. 2018; 77(4): 546–556. http://dx.doi.org/10.1590/1678-4499.2017385
Díaz-Matallana M, Schuler-García I, Ruiz-García M, Hodson De Jaramillo E. Analysis of diversity among six populations of Colombian mango (Mangifera indica L. cvar. Hilacha) using RAPDs markers. Electronic Journal of Biotechnology. 2009; 12(3).
González-Orozco C, Osorio-Guarín J, Yockteng R. Phylogenetic diversity of cacao (Theobroma cacao L.) genotypes in Colombia. Plant Genetic Resources: Characterization and Utilization. 2022; 20(3): 203–214. https://doi.org/10.1017/S1479262123000047
López-Uribe M, Soro A, Jha S. Conservation genetics of bees: advances in the application of molecular tools to guide bee pollinator conservation. Conservation Genetics. 2017; 18(3): 501–506. https://doi.org/10.1007/s10592-017-0975-1
Da Silva G, Souza I, Pereira F, Souza B, Lopes M, Bentzen P, et al. Genome-wide discovery and characterization of microsatellite markers from Melipona fasciculata (Hymenoptera: Apidae), cross-amplification and a snapshot assessment of the genetic diversity in two stingless bee populations. European Journal of Entomology. 2018; 115: 614–619. https://doi.org/10.14411/eje.2018.058
Duque-Gamboa D, Arenas A, Posso-Terranova A, Toro-Perea N. Mutualistic interaction of aphids and ants in pepper, Capsicum annuum and Capsicum frutescens (Solanaceae). Revista de Biología Tropical. 2021; 69(2): 626–639. https://doi.org/10.15517/rbt.v69i2.43429
Duque-Gamboa D, Castillo-Cárdenas M, Hernández L, Guzmán Y, Manzano M, Toro-Perea N. The bud midge Prodiplosis floricola in citrus crops in Colombia. Entomologia Experimentalis et Applicata. 2018; 166(3): 204–214. https://doi.org/10.1111/eea.12654
Cai Z, Chen Y, Guo Y, Cao K. Responses of two field-grown coffee species to drought and re-hydration. Photosynthetica. 2005; 43(2): 187–193. https://doi.org/10.1007/s11099-005-0032-z
Leal-Echeverri J, Tobón C. The water footprint of coffee production in Colombia. Revista Facultad Nacional de Agronomía Medellín. 2021; 74(3): 9685–9697. https://doi.org/10.15446/rfnam.v74n3.91461
Masarirambi M, Chingwara V, Shongwe V. The effect of irrigation on synchronization of coffee (Coffea arabica L.) flowering and berry ripening at Chipinge, Zimbabwe. Physics and Chemistry of the Earth. 2009; 34(13–16): 786–789. https://doi.org/10.1016/j.pce.2009.06.013
Prado S, Collazo J, Stevenson P, Irwin R. A comparison of coffee floral traits under two different agricultural practices. Scientific Reports. 2019; 9(1): 7331. https://doi.org/10.1038/s41598-019-43753-y
Fitch G, Gonzalez J, Oana A, Oliver M, Vandermeer J. Integrating effects of neighbor interactions for pollination and abiotic resources on coffee yield in a multi-strata agroforest. Biotropica. 2022; 54(5): 1226–1237. https://doi.org/10.1111/btp.13145
Torrez V, Benavides-Frias C, Jacobi J, Speranza C. Ecological quality as a coffee quality enhancer. A review. Agronomy for Sustainable Development. 2023; 43(1):19. https://doi.org/10.1007/s13593-023-00874-z
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Ciencias Agropecuarias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.


