Estrategias para reducir las emisiones de metano entérico en rumiantes

Autores/as

DOI:

https://doi.org/10.36436/24223484.656

Palabras clave:

Ganadería, microbiota, calentamiento global, hexafluoruro de azufre, detector laser

Resumen

La simbiosis entre bacterias, hongos, protozoarios y arqueobacterias metanogénicas, mantiene un flujo constante del hidrógeno en el rumen para producir metano y ácidos grasos de cadena corta como parte de la degradación y fermentación del alimento. Como estrategia para reducir las emisiones entéricas de metano, se utilizan compuestos químicos —algunos extraídos de plantas— mismas que se utilizan en partes o en su totalidad y que se incluyen en la dieta, porque tienen la capacidad de afectar la compleja ecología ruminal y de esta forma, reducir la producción de metano entérico. Otras estrategias incluyen el manejo alimenticio y favorecen la degradación y fermentación del alimento al usar diferentes proporciones de ingredientes que hacen eficiente la producción de ácidos grasos de cadena corta y la síntesis de proteína microbiana. Se puede medir las emisiones entéricas de metano de forma directa con la técnica del detector láser, capaz de cuantificar el metano exhalado al aire presente cerca a la nariz y boca del rumiante. Las mediciones indirectas, como la técnica con hexafluoruro de azufre utilizada en rumiantes en pastoreo no alteran su comportamiento natural. La clave de la mitigación de metano es conocer las simbiosis entre los microorganismos ruminales y así establecer estrategias conjuntas con compuestos químicos y manejo alimenticio según las condiciones propias de cada producción. La presente revisión, tiene como objetivo presentar algunas de las estrategias para reducir las emisiones de metano entérico en rumiantes y sus efectos sobre las variables de fermentación y microbiota ruminal.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Beagley J, Belesova K, et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. The Lancet. 2021 en.;397(10269):129-70.

Wang K, Xiong B, Zhao X. Could propionate formation be used to reduce enteric methane emission in ruminants? Sci Total Environ. 2022 sept.;158867.

Ugbogu EA, Elghandour MMMY, Ikpeazu VO, Buendía GR, Molina OM, Arunsi UO, et al. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. J Clean Prod. 2019 mzo.;213:915-25.

Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol. 2010 ag.;160(1-2):1-22.

Tóthová T, Piknová M, Kišidayová S, Javorský P, Pristaš P. Distinctive archaebacterial species associated with anaerobic rumen protozoan Entodinium caudatum. Folia Microbiol (Praha). 2008 my.;53(3):259-62.

Patra AK, Saxena J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 2010 ag.;71(11-12):1198-222.

Park T, Yu Z. Do Ruminal Ciliates Select Their Preys and Prokaryotic Symbionts? Front Microbiol. 2018 jul. 31;9:1710.

Li Z, Deng Q, Liu Y, Yan T, Li F, Cao Y, et al. Dynamics of methanogenesis, ruminal fermentation and fiber digestibility in ruminants following elimination of protozoa: a meta-analysis. J Anim Sci Biotechnol. 2018 dic. 18;9(1):89.

Hille KT, Hetz SK, Rosendahl J, Braun HS, Pieper R, Stumpff F. Determination of Henry’s constant, the dissociation constant, and the buffer capacity of the bicarbonate system in ruminal fluid. J Dairy Sci. 2016 en.;99(1):369-85.

McAllister TA, Newbold CJ. Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric. 2008;48(2):7.

Nguyen SH, Hegarty RS. Effects of defaunation and dietary coconut oil distillate on fermentation, digesta kinetics and methane production of Brahman heifers. J Anim Physiol Anim Nutr. 2017 oct.;101(5):984-93.

Nguyen SH, Nguyen HDT. Hegarty RS. Defaunation and its impacts on ruminal fermentation, enteric methane production and animal productivity. LRRD. 2020;32(4):10.

Nguyen SH, Bremner G, Cameron M, Hegarty RS. Methane emissions, ruminal characteristics and nitrogen utilisation changes after refaunation of protozoa-free sheep. Small Rumin Res. 2016 nov.;144:48-55.

Patra AK. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants. Front Vet Sci [Internet]. 2016 my. 20 [citado 2022 sept. 19];3. Disponible en: http://journal.frontiersin.org/Article/10.3389/fvets.2016.00039/abstract

Leahy SC, Janssen PH, Attwood GT, Mackie RI, McAllister TA, Kelly WJ. Electron flow: key to mitigating ruminant methanogenesis. Trends Microbiol. 2022 mzo.;30(3):209-12.

Almeida AK, Hegarty RS, Cowie A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Anim Nutr. 2021dic.;7(4):1219-30.

Buddle BM, Denis M, Attwood GT, Altermann E, Janssen PH, Ronimus RS, et al. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Vet J. 2011 abr.;188(1):11-7.

Bes A, Nozière P, Renand G, Rochette Y, Guarnido-Lopez P, Cantalapiedra-Hijar G, et al. Individual methane emissions (and other gas flows) are repeatable and their relationships with feed efficiency are similar across two contrasting diets in growing bulls. Animal. 2022 ag.;16(8):100583. doi: https://doi.org/10.1016/j.animal.2022.100583

Subharat S, Shu D, Zheng T, Buddle BM, Janssen PH, Luo D, et al. Vaccination of cattle with a methanogen protein produces specific antibodies in the saliva which are stable in the rumen. Vet Immunol Immunopathol. 2015 abr.;164(3-4):201-7.

Pereira AM, de Lurdes Nunes Enes Dapkevicius M, Borba AES. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission? Anim Microbiome. 2022 dic.;4(1):5.

Lopez S, McIntosh FM, Wallace RJ, Newbold CJ. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim Feed Sci Technol. 1999 mzo.;78(1-2):1-9.

Haque MN. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J Anim Sci Technol. 2018 dic.;60(1):15.

Moate PJ, Williams SRO, Jacobs JL, Hannah MC, Beauchemin KA, Eckard RJ, et al. Wheat is more potent than corn or barley for dietary mitigation of enteric methane emissions from dairy cows. J Dairy Sci. 2017 sept.;100(9):7139-53.

Zhang RY, Jin W, Feng PF, Liu JH, Mao SY. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal. 2018;12(12):2511-20.

Plaizier JC, Li S, Danscher AM, Derakshani H, Andersen PH, Khafipour E. Changes in Microbiota in Rumen Digesta and Feces Due to a Grain-Based Subacute Ruminal Acidosis (SARA) Challenge. Microb Ecol. 2017 ag.;74(2):485-95.

Jordan E, Lovett DK, Monahan FJ, Callan J, Flynn B, O’Mara FP. Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers1. J Anim Sci. 2006 en. 1;84(1):162-70.

Vasta V, Daghio M, Cappucci A, Buccioni A, Serra A, Viti C, et al. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J Dairy Sci. 2019 my.;102(5):3781-804.

Lakhani N, Kamra DN, Lakhani P, Kala A. Effect of Rumen Modifier on Methanogenesis and Feed Digestibility under in Vitro Conditions. Indian J Anim Nutr. 2019;36(1):99.

Galindo J, González N, Abdalla AL, Alberto M, Lucas RC, Dos KC, et al. Effect of a raw saponin extract on ruminal microbial population and in vitro methane production with star grass (Cynodon nlemfuensis) substrate Efecto de un extracto crudo de saponinas en la población microbiana ruminal y en la producción de metano in vitro con sustrato de pasto estrella (Cynodon nlemfuensis). Cuban J Agric Sci. 2016;50(1):13.

Ku-Vera JC, Castelán-Ortega OA, Galindo-Maldonado FA, Arango J, Chirinda N, Jiménez-Ocampo R, et al. Review: Strategies for enteric methane mitigation in cattle fed tropical forages. Animal. 2020;14:s453-63.

Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, et al. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front Vet Sci. 2020 ag. 27;7:584.

Zhang Z, Wei W, Yang S, Huang Z, Li C, Yu X, et al. Regulation of Dietary Protein Solubility Improves Ruminal Nitrogen Metabolism In Vitro: Role of Bacteria–Protozoa Interactions. Nutrients. 2022 jul. 20;14(14):2972.

Mustapha NA, Sharuddin SS, Mohd Zainudin MH, Ramli N, Shirai Y, Maeda T. Inhibition of methane production by the palm oil industrial waste phospholine gum in a mimic enteric fermentation. J Clean Prod. 2017 nov.;165:621-9.

Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, et al. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front Vet Sci. 2020 ag. 27;7:584.

Yang K, Wei C, Zhao GY, Xu ZW, Lin SX. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility. J Anim Physiol Anim Nutr. 2017 abr.;101(2):302-10.

Jafari S, Ebrahimi M, Goh YM, Rajion MA, Jahromi MF, Al-Jumaili WS. Manipulation of Rumen Fermentation and Methane Gas Production by Plant Secondary Metabolites (Saponin, Tannin and Essential Oil) – A Review of Ten-Year Studies. Ann Anim Sci. 2019 en. 1;19(1):3-29.

Joch M, Mrázek J, Skřivanová E, Čermák L, Marounek M. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. J Anim Physiol Anim Nutr. 2018 ag.;102(4):869-81.

Jayanegara A, Yogianto Y, Wina E, Sudarman A, Kondo M, Obitsu T, et al. Combination Effects of Plant Extracts Rich in Tannins and Saponins as Feed Additives for Mitigating in Vitro Ruminal Methane and Ammonia Formation. Animals. 2020 ag.30;10(9):1531.

Liu Y, Ma T, Chen D, Zhang N, Si B, Deng K, et al. Effects of Tea Saponin Supplementation on Nutrient Digestibility, Methanogenesis, and Ruminal Microbial Flora in Dorper Crossbred Ewe. Animals. 2019 en.;9(1):29.

Anantasook N, Wanapat M, Cherdthong A, Gunun P. Effect of tannins and saponins in Samanea saman on rumen environment, milk yield and milk composition in lactating dairy cows. J Anim Physiol Anim Nutr. 2015 abr.;99(2):335-44.

Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM, Cueva SF, et al. Strategies to mitigate enteric methane emissions by ruminants - a way to approach the 2.0°C target. agriRxiv. 2021 en.;2021:20210085288.

Van Gastelen S, Antunes-Fernandes EC, Hettinga KA, Klop G, Alferink SJJ, Hendriks WH, et al. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets. J Dairy Sci. 2015 mzo.;98(3):1915-27.

Alvarez-Hess PS, Williams SRO, Jacobs JL, Hannah MC, Beauchemin KA, Eckard RJ, et al. Effect of dietary fat supplementation on methane emissions from dairy cows fed wheat or corn. J Dairy Sci. 2019 mzo.;102(3):2714-23.

Cobellis G, Trabalza-Marinucci M, Marcotullio MC, Yu Z. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim Feed Sci Technol. 2016 my.;215:25-36.

Kholif AE, Olafadehan OA. Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem Rev [Internet]. 2021 febr. 11 [citado 2021 abr. 12]; Disponible en: https://doi.org/10.1007/s11101-021-09739-3

Sirohi SK, Goel N, Singh N. Utilization of Saponins, a Plant Secondary Metabolite in Enteric Methane Mitigation and Rumen Modulation. Annu Res Rev Biol. 2014;1-19.

Valencia Salazar SS, Piñeiro Vázquez AT, Molina Botero IC, Lazos Balbuena FJ, Uuh Narváez JJ, Segura Campos MR, et al. Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agric For Meteorol. 2018 ag.;258:108-16.

Hernández-Morales J, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez J, Rojas-García AR, Reyes-Vázquez I, et al. Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Rev Mex Cienc Pecu. 2017 dic.26;9(1):105.

Albores-Moreno S, Alayón-Gamboa JA, Ayala-Burgos AJ, Solorio-Sánchez FJ, Aguilar-Pérez CF, Olivera-Castillo L, et al. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass. Trop Anim Health Prod. 2017 abr.;49(4):857-66.

Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol. 2005 sept.;123-124:403-19.

Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, et al. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J Dairy Sci. 2020 mzo.;103(3):2303-14.

Melchior EA, Hales KE, Lindholm-Perry AK, Freetly HC, Wells JE, Hemphill CN, et al. The effects of feeding monensin on rumen microbial communities and methanogenesis in bred heifers fed in a drylot. Livest Sci. 2018 jun.;212:131-6.

Lengowski MB, Zuber KHR, Witzig M, Möhring J, Boguhn J, Rodehutscord M. Changes in Rumen Microbial Community Composition during Adaption to an In Vitro System and the Impact of Different Forages. Virolle MJ, editor. PLOS ONE. 2016 febr.29;11(2):e0150115.

Troy SM, Duthie CA, Hyslop JJ, Roehe R, Ross DW, Wallace RJ, et al. Effectiveness of nitrate addition and increased oil content as methane mitigation strategies for beef cattle fed two contrasting basal diets1. J Anim Sci. 2015 abr.1;93(4):1815-23.

Savoini G, Omodei Zorini F, Farina G, Agazzi A, Cattaneo D, Invernizzi G. Effects of Fat Supplementation in Dairy Goats on Lipid Metabolism and Health Status. Animals. 2019 nov.4;9(11):917.

Joy F, Johnson JA, Górka P, McKinnon JJ, Hendrick S, Penner GB. Effect of dietary lipid inclusion from by-product-based pellets on dry matter intake, ruminal fermentation, and nutrient digestion in finishing beef heifers. Miglior F, editor. Can J Anim Sci. 2021 sept.1;101(3):481-92.

Ghorbani H, Kazemi-Bonchenari M, HosseinYazdi M, Mahjoubi E. Effects of various fat delivery methods in starter diet on growth performance, nutrients digestibility and blood metabolites of Holstein dairy calves. Anim Feed Sci Technol. 2020 abr.;262:114429.

Lamp O, Reyer H, Otten W, Nürnberg G, Derno M, Wimmers K, et al. Intravenous lipid infusion affects dry matter intake, methane yield, and rumen bacteria structure in late-lactating Holstein cows. J Dairy Sci. 2018 jul.;101(7):6032-46.

Doreau M, Arbre M, Rochette Y, Lascoux C, Eugène M, Martin C. Comparison of 3 methods for estimating enteric methane and carbon dioxide emission in nonlactating cows. J Anim Sci. 2018 abr. 14;96(4):1559-69.

Hristov AN, Melgar A, Wasson D, Arndt C. Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. J Dairy Sci. 2022 oct.;105(10):8543-57.

Jonker A, Molano G, Antwi C, Waghorn GC. Enteric methane and carbon dioxide emissions measured using respiration chambers, the sulfur hexafluoride tracer technique, and a GreenFeed head-chamber system from beef heifers fed alfalfa silage at three allowances and four feeding frequencies1–3. J Anim Sci. 2016 oct. 1;94(10):4326-37.

Deighton MH, Williams SRO, Hannah MC, Eckard RJ, Boland TM, Wales WJ, et al. A modified sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Anim Feed Sci Technol. 2014 nov.;197:47-63.

Arbre M, Rochette Y, Guyader J, Lascoux C, Gómez LM, Eugène M, et al. Repeatability of enteric methane determinations from cattle using either the SF6 tracer technique or the GreenFeed system. Anim Prod Sci. 2016;56(3):238.

Della Rosa MM, Jonker A, Waghorn GC. A review of technical variations and protocols used to measure methane emissions from ruminants using respiration chambers, SF6 tracer technique and GreenFeed, to facilitate global integration of published data. Anim Feed Sci Technol. 2021 sept.;279:115018.

Scafutto RDM, de Souza Filho CR, Riley DN, de Oliveira WJ. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring. Int J Appl Earth Obs Geoinformation. 2018 febr.;64:311-25.

Roessler R, Chefor F, Schlecht E. Using a portable laser methane detector in goats to assess diurnal, diet- and position-dependent variations in enteric methane emissions. Comput Electron Agric. 2018 jul.;150:110-7.

Ricci P, Chagunda MGG, Rooke J, M. Houdijk JG, Duthie CA, Hyslop J, et al. Evaluation of the laser methane detector to estimate methane emissions from ewes and steers1. J Anim Sci. 2014 nov. 1;92(11):5239-50.

Descargas

Publicado

2022-12-30

Cómo citar

Portela, D. F., Cervantes-Gomez, D., Escobar-España, J. C., Sánchez-Santillán, P., & Curzaynz, K. R. (2022). Estrategias para reducir las emisiones de metano entérico en rumiantes. Ciencias Agropecuarias, 8(2), 49–61. https://doi.org/10.36436/24223484.656

Número

Sección

Artículos